
IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 5, May 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3532 153

Creating A Virtual Lab

Shriya Limburkar
1
,Tanaya Kavthekar

1,
,Hrishikesh Lavhare

1
,Nikhil Khladkar

1
,Shailesh P.Bendale

2

Student, Department of Computer Engineering, NBN Sinhgad School of Engineering, Pune, India1

Asst. Prof. Department of Computer Engineering, NBN Sinhgad School of Engineering, Pune, India2

Abstract: Virtualization are one of the most trending technologies in the world of Information Technology and are

gaining popularity around the world due to their cost reducing nature, flexibility and scalability. In this paper we intend

to provide a software framework for cloud computing for college laboratories: system that provides a model in which

operating systems are hosted by a central server. Clones of virtual machines hosting the operating systems are made

available to the clients on demand. The availability of operating systems is made over a network, typically internet or

intranet using the SSH protocol for communication between the client and the server. The central server will be

providing a resource rich environment empowering the user to optimize resources, increase scalability by creating
clients dynamically and flexibility to customize application accessibility. The Software framework, principled on server

virtualization techniques that can be achieved using kernel virtual machine (KVM). The proposed framework is simple,

modular and provides access to infrastructure commonly found within an academia. The software framework will also

be equipped with a friendly graphical user interface and eliminates the tedious process of using command prompt for

creating and managing virtual machines. The GUI enables the user to generate desired number of clients within the

predefined server’s client generation limits. It also permits the user to deploy variable packages to the created clients on

request.

Keywords: Virtualization, Kernel Virtual Machine (KVM), Virtual Machine, Libvirt API.

I. INRODUCTION

In college laboratories often more than one operating

systems are required by the students for academic

assignments. For such a setup often the students multiple

boot the college computers. However the process of

multiple boot is lengthy and tedious process and has its

limitations. Hence the paper intends to provide an

alternate option of creating a virtual lab which uses

virtualization technique consisting of different virtual

machines hosting the operating systems the students

require in the operating system.

In this paper we give a detail introduction of the
technologies we have used to create a virtual laboratory

such as Virtualization, Virtual Machine, Hypervisors,

Libvirt API used for connecting the user to the hypervisor

and SSH protocol used for client server communication.

II. VIRTUALIZATION

There’s a new wind of change in the IT industry today. It’s

called virtualization. In a datacenter one can find

virtualization at several levels but the virtualization type

which is extensively adopted in the IT industry is guest
operating system (OS) or server virtualization. Guest OS

virtualization is a software layer that provides the ability to

expose physical resources to make them available to

several different virtual machines at the sametime.

Guest OS virtualization technologies come in two flavors.

The first is a software layer that is used to simulate a

physical machine on top of an existing operating system

running on a hardware host. The second layer is a

hypervisor—a software engine that exists directly on the

top of hardware and eliminates the overhead of a

secondary operating system.[1]

A. Hypervisor and its role

Hypervisors are defined as software tools used to form the

Virtual Machines (VM’s), and they create the

virtualization of various hardware resources such as CPU,

storage, and networking devices. Hypervisors are also

called virtual machine monitor (VMM) or virtualization

managers. Virtualization of cloud data centers (DCs) use

hypervisors. VMware, Xen, Hyper-V, KVM etc. are

various hypervisors used. Multiple OSs concurrently run

on a physical system sharing its hardware using VM’s.

Thus, a hypervisor permits multiple OSs to share a single
hardware host. Every OS seems to have the host’s

processor, memory, and other resources allocated

exclusively to it. However, the host processor and

resources are controlled by the hypervisor and in turn it

allocates resources which is needed by each OS. The

hypervisor ensures functional dependencies of the guest

Oss.[1]

B. What is virtual machine?

Virtual Machine is a self-contained operating environment

that runs on the top of hypervisor and behaves as if it is a
separate computer which has a separate instance of

operating system.A virtual machine is made up of several

different components such as:-

1) Configuration File

 A file that contains the settings information amount of

RAM, number of processors, type and number of network

interface cards (NICs), type and number of virtual disks

for the virtual machine. This file is in the form of

Extended Markup Language (XML) and is edited

accordingly for all virtual machine created in the

laboratory.

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 5, May 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3532 154

2) Hard disk File

Each time you create a virtual machine, the virtualization
software will create a virtual hard disk, that is, a file that

acts like a typical sector-based disk. In the implementation

we creates an image (.img)file for each virtual machine

which acts like the Hard disk file for the virtual

machine.[2]

III.KERNAL VIRTUAL MACHINE (KVM)

KVM is highly-developed by Red Hat, accessible as a

free, open-source alternative to other commercial

solutions. VMware and virtual box products are self-

generated or friendly but KVM is mainly a command-line
tool. In recent Linux kernel KVM is already built in.KVM

(for Kernel-based Virtual Machine) is a full virtualization

solution for Linux on x86 hardware that contains

virtualization extensions such as AMD-V or Intel VT.

The core virtualization infrastructure is catered by

loadable kernel module and kvm.ko. kvm-intel.ko or kvm-

amd.kowhich are processor specific modules also exist on

KVM. Unmodified Linux or Windows images are hosted

by multiple virtual machines are executed using KVM.

Private virtualized hardware: graphics adapter, a network
card, disk etc. is present on each virtual machine. Any

improvements in new Linux kernel versions can be

automatically enabled due to KVM's integration into the

Linux kernel.

A Linux kernel which is new enough and has had the

KVM modules built for it are used to run KVM. In case of

Xen a heavily patched Linux kernel is required, on which

development lags behind the mainline kernel. KVM

supports QEMU Copy-on-write (QCOW) disk image

format, which permits it to support a snapshot mode for its

disk I/O operations. A temporary file is used as a target
file for all disk writes, and original disk image file remains

unchanged in a snapshot mode. The huge storage

requirements associated with hosting a grid of VM's is

mitigated in KVM, by running multiple VM's from one

disk image. SIGKILL command is used for destroying a

virtual cluster. Command is send to each hypervisor which

deletes the image from disk. For Ethernet bridging, the

standard Linux TUN/TAP model is supported by KVM.

Each VM gets its own networking resources by using this

model and making it indistinguishable from a physical

machine. [3]

IV. LIBVIRT APPLICATION INTERFACE

Libvirt is an open source API, daemon and management

tool for managing platform virtualization. KVM, Xen,

VMware ESX, QEMU and other virtualization

technologies can be managed by libvirt. In the

development of a cloud-based solution these APIs are

widely used in the adaptation layer of hypervisors.

Libvirt provides a suitable way to manage virtual
machines and other virtualization functionality, such as

storage and network interface management. Libvirt is a

collection of software. An API library, a daemon

(libvirtd), and a command line utility (virsh) together
constitute the software.

Libvirt aims to offer a single way to manage multiple

different virtualization providers/hypervisors. For

instance, the command 'virsh list --all' can be used to list

the existing virtual machines for any supported hypervisor

(KVM, Xen, VMWare ESX, etc.) [4]

V. SECURE SHELL (SSH) PROTOCOL

Secure Shell (SSH) provides a free protocol for

safeguarding network communications that isless complex
and costly than hardware-based VPN solutions. Secure

Shell client/server solutions deliver file transfer, command

shell, and data tunneling services for TCP/IP applications.

Highly protected authentication,data integrity and

encryption to combat password stealing and other security

threats are provided by SSH connections.[5]

VI.IMPLEMENTATION

The software framework is consists of a server and a client

paradigm.

A. User Interface

The client side consists of user interface which enables the

user to create virtual machines at server side and access

the virtual machines using remote ssh protocol.

A simple graphical user interface consisting of radio

buttons is provided for the user to choose the operating

system he wish to work on.

Fig 1. User Interface for selecting the required Operating

System

B. Server Specification And Working

At server side the server first serves the request it gets

from client. The server has a set of virtual machines

hosting operating systems such as fedora and Ubuntu

consisting of all the necessary software’s required by the
students. On receiving the input from the user the server

simply clones the virtual machine which hosts the

operating system the user wishes to work on.

The following snippet shows the server side working:-

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 5, May 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3532 155

Fig 2. Server Side working of the software

The snippet shows how the server accepts the client

request and accordingly clones the required operating

system.

C. Creation Of Virtual Machine Using Xml

Template

An xml file consisting of virtual machine specifications is

used for creation of virtual machines. Properties such as

OS type, OS version, RAM size, storage type are specified

in this xml file.

The following snippet shows a template of xml file used in

the implementation:

Fig 3. Snippet of XML file of a virtual machine

VII. PERFORMANCE ANALYSIS OF SERVER

The server which hosts the virtual machine provide the

virtual machines with resources such as CPU and memory.

Hence it is crucial to analyze the performance of the server

under increased load in terms of number of virtual

machines hosted by it.

An open source benchmark platform named phoronix test

suite is used for this purpose.

The Phoronix Test Suite (PTS) is anopen source
benchmark platform which was used to benchmark and

compare various system attributes. Of the multitude of

tests and profiles available five were chosen to measure

various performance attributes important in a virtual

environment. These attributes include CPU usage, disk

access rate, memory access rate, and how well the

hypervisor is able to handle high loads distributed across

several virtual machines running simultaneously.

The benchmark that we have selected for testing the server

performance is Apache benchmark: measures how many

requests per second a given system can sustain when

carrying out 500,000 requests with 100 requests being
carried out concurrently.

A. Test Scenario

For testing the performance of the server we create virtual

machine with Ubuntu and Fedora as the operating systems

hosted by the virtual machine.

In this scenario we go on increasing the number of virtual

machines and for each step perform the Apache

benchmark using phoronix.

B. Virtual Machine Specifications

Fresh images of virtual machines created solely for
running these benchmarks and each virtual machine was

allocated 1GB of RAM. Additionally, no other virtual

machines were running on the hosts other than the

machines actively running the benchmarks.

Fedora 19 and Ubuntu 12.10 LTS were the operating

systems hosted by the virtual machines.

The Apache Benchmark is designed to test the

performance a given server can provide. It does this by

stressing a given server to determine how many requests

per second it is able to handle. The version of the

benchmark that is included with PTS attempts to execute
500,000 requests to the server 100 requests at a time. It

then measures how many request per second the system is

able to sustain.

This benchmark was chosen as it gives a good idea how

the hypervisor is able to handle increasing I/O stress in

terms of CPU and memory usage as the number of virtual

machines

increases.

VIII. RESULTS

The following table will show the results of the Apache
Benchmark test performed at the server side. The table

shows the relation of number of virtual machines and

average requests a server can handle.

Table I

Experimental Observations of the result of the test Apache

Benchmark

Number of Virtual

Machines

Average number of

requests handle by the

server per second.

1 12499.36

2 12373.26

3 12336.62

4 12084.15

5 11794.30

The following graph depicts the above mentioned results:

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 5, May 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3532 156

Fig 4: Graphical Representation of the result

This benchmark shows that as the number of virtual

machines goes on increasing the performance of the

hypervisor at the server side goes on decreasing.

IX. CONCLUSION

Thus we have discussed various virtualization techniques.

Virtualization provides increased compatibility and

manageability by isolating applications from underlying

operating system and other applications.

The virtualization layer controls and manages the runtime

execution of applications by porting applications files,

configurations and settings on the target device.

We implemented a model for virtual labs which uses all

the above stated perks of using virtualization techniques.

In universities and colleges a large number of machines
run the university stated software’s and accordingly the

configuration of each machine is set. However if any

change in software requirements or resource requirement

is stated a lot of time, resources are required to update the

configurations of all the machines.

Hence using virtualization technique we have created a

central server which hosts the virtual systems with

required applications. And all the other machines (clients)

are connected to the central servers and the applications

the virtual machines are ported to the clients using

virtualization techniques.

X. FUTURE SCOPE

We have implemented software using intranet

connectivity. In future we can extend the accessibility of

the model so as virtual machines having the required

applications providedby the software can be accessed from

anywhere. This can be implemented using internet

connectivity.

REFERENCES

[1] Virtualisation OverviewAvailable at: http://www.vmware.com.

[2] DANIELLE RUEST NELSON RUEST “Virtualization a beginners

guide, Chapter 2 Begin the Five Step Process” Pages 30-31.

[3] www3.nccu.edu.tw/~yuf/slides/kvm.pdf

[4] libivrt:http://wiki.libvirt.org/page/FAQ#What_is_libvirt.3F

[5] VanDyke “An Overview of theSecure Shell (SSH)”2008

Link:https://www.vandyke.com/solutions/ssh_overview/ssh_overvi

ew.pdf

http://www.vmware.com/

